How to Study Math Flash Cards

All of the formulas from The SAT Math Bible are provided in the following flash cards. Review each card, and remove any formulas that you already know. Study only the cards with formulas that you have not yet memorized. To increase your retention of the formulas, try these study methods:

1. **Write out the formulas and their components.**
 Transferring the formulas to paper helps transfer the information into your long-term memory.

2. **Group formulas by content area.**
 By placing the cards in groups, such as “Circles” or “Transformations,” you can begin to see connections between formulas that may help with memorization.

(Continued on back of card)

PowerScore Essential SAT Flashcards

PowerScore has analyzed over 50 tests to bring you the most commonly-occurring vocabulary words on the SAT! These 200 words should be the foundation of your vocabulary preparation, as you are sure to encounter a large majority of them throughout your SAT study and testing experience. In addition to a standard definition, each card uses the word in a sentence and offers common word forms, antonym forms, and related words to help you increase retention and strengthen memorization skills. Use these portable and compact flash cards in class, on the bus, at home, or anywhere you go!

PowerScore Live Online SAT Course

Comprehensive live instruction from the comfort of your home.

The Live Online Course offers:
- Live, interactive instruction via the internet
- 18 hours of class time
- 6 full-length take-home tests with detailed score reports
- 200 point score increase guarantee
- 95th percentile instructors
- Over 1400 pages of course material
- Online Student Center Access
- Extensive homework and optional problems sets with full explanations for every problem
- Customizable courses for schools and groups
- $1000 Perfect Score Scholarship

PowerScore Full Length SAT Course

The most comprehensive live SAT course for the most important test of your academic career!

The Full-Length Course offers:
- 40 hours of class time
- 4 full-length practice tests with detailed score reports
- 300 point score increase guarantee
- 95th percentile instructors
- Over 1500 pages of course material
- 15 hours of SAT Hotline assistance each week
- Online Student Center Access
- 2 take-home tests with detailed score reports
- Extensive homework and optional problems sets with full explanations for every problem
- Customizable courses for schools and groups
- $1000 Perfect Score Scholarship

Order of Operations

A fundamental principle of all math is the order of operations. This rule sets precedence for which operations are performed first when solving or simplifying expressions and equations. The six operations are addition, subtraction, multiplication, division, exponentiation, and grouping, and their order of precedence is often remembered using the acronym PEMDAS.

Each of the letters in PEMDAS represents an operation and its order of priority:

- **P**arentheses (grouping)
 1st
- **E**xponents
 2nd
- **M**ultiply
 3rd
- **D**ivide
 4th
- **A**dd
 5th
- **S**ubtract
 6th

For more information, visit PowerScore.com
(800)545-1750 www.powerscore.com

For more information, visit PowerScore.com
(800)545-1750 www.powerscore.com
How to Study Math Flash Cards

3. Write sample questions that require each formula.
 You can find existing questions from The Official SAT Study Guide grouped by content in the Blue Book Database on the book owner's website. Use these questions to write your own example questions, along with detailed solutions to your questions. The most effective strategy for learning information is to teach the information to someone else.

4. Have someone quiz you.
 Enlist a family member or friend to quiz you on each flash card. If you correctly identify or explain a formula, place a check mark in the target on the flash card. Once a formula is completely memorized, remove it from your stack of flash cards.

PowerScore SAT Math Bible Flashcards
(800)545-1750 www.powerscore.com

PowerScore
Supplemental SAT Prep

SAT Private Tutoring
Private tutoring gives you the opportunity to work face-to-face with one of our highly qualified instructors, who can quickly pinpoint your strengths and weaknesses and create a individualized curriculum to address your needs. Please call or visit our website to learn about our tutoring packages and availability.

Home Study Course
For some students, independent study and practice is the best test prep solution. We offer a home study course which includes the Full-Length SAT course books, access to the Online Student Area, a copy of The Official SAT Study Guide, and online score reports for all ten practice tests. To learn more about this package, please call our office or visit our website.

For more information, visit PowerScore.com
(800)545-1750 www.powerscore.com

Order of Operations

PEMDAS
Let’s look at an example of an expression in which the order of operations is required:

5(1 + 4)² – 10

Begin with operation in the parentheses (P):

5(1 + 4)² – 10 = 5(5)² – 10

Now remove the exponents (E):

5(5)² – 10 = 5(25) – 10

Multiplication and division are next (M/D):

5(25) – 10 = 125 – 10

Finally, addition and subtraction are performed (A/S):

125 – 10 = 115

PowerScore SAT Math Bible Flashcards
(800)545-1750 www.powerscore.com

PowerScore Free Help Area

Have questions about the SAT or admissions? Need some free study material? Check out PowerScore’s Free Help Area at www.powerscore.com/sat/help. You’ll find dozens of articles and printable study aids, including:

• Reading Comprehension practice
• Information for homeschooled students
• Parent FAQs
• Timeline for admissions
• Vocabulary Quizzes
• Math Practice Sets
• And much, much more!

You can also contact a PowerScore representative at (800)545-1750 or sat@powerscore.com. We are happy to assist you with your SAT preparation!

Visit the Free Help Area at PowerScore.com
© Copyright 2010

PowerScore Weekend SAT Course

The original Weekend Course delivers intense instruction in a single weekend, to better fit your busy schedule.

The Weekend Course offers:

✦ 12 hours of class time
✦ 8 full-length take-home tests with detailed score reports
✦ 150 point score increase guarantee
✦ 95th percentile instructors
✦ Over 1200 pages of course material
✦ Email Assistance Program after the course
✦ Online Student Center Access
✦ Extensive homework and optional problems sets with full explanations for every problem
✦ Customizable courses for schools and groups
✦ $1000 Perfect Score Scholarship
✦ Incredibly low price

For more information, visit PowerScore.com
(800)545-1750 www.powerscore.com
integer

Any number in the set of positive and negative whole numbers and zero:

\{…-4, -3, -2, -1, 0, 1, 2, 3, 4…\}

- Integers do not include fractions or decimals
- Integers are the most commonly used numbers on the SAT
- It is important to remember that 0 is an integer

set

A collection of numbers marked by brackets:

\{4, 6, 9, 13\}

- Sets can contain any amount of numbers
- Sets may have rules, such as “all even integers”

digit

The numbers 0 through 9:

\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

- Place is used to represent where in a number a digit occurs
- The ones digit or units digit in 3748 is 8
- The tens digit in 3748 is 4
- The hundreds digit in 3748 is 7

sum

The amount obtained by adding numbers

- The sum of 2, 3, and 4 is 9: \((2 + 3 + 4 = 9)\)
- The sum of \(x\) and \(y\) is \(x + y\)

product

The amount obtained by multiplying numbers

- The product of 2, 3, and 4 is 24: \((2 \times 3 \times 4 = 24)\)
- The product of \(x\) and \(y\) is \(xy\)

multiple

An integer that is divisible by another integer without a remainder

- Multiples of 3 include \{-6, -3, 3, 6, 9, 12\}
- Multiples of 4 include \{-8, -4, 4, 8, 12, 16\}
DEFINITION

set

integer

DEFINITION

sum

digit

DEFINITION

multiple

product
divisible

Describes a number capable of being divided without a remainder. A number that is divisible by x is also said to be a multiple of x.

- 18 is divisible by 1, 2, 3, 6, 9, and 18
- xy is divisible by 1, x, y, and xy

factor

One of two or more numbers that divides into a larger number without a remainder

- Factors of 18 are 1 and 18, 2 and 9, and 3 and 6
- Factors of xy include 1 and xy, plus x and y

10 prime numbers

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...}

Additional prime numbers under 100:

{31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

prime number

An integer that does not have any factors besides itself and 1

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...}

- One (1) is not a prime number
- When prime numbers are multiplied together, the product’s factors are limited to itself, one, and the prime numbers themselves

prime factor

Prime numbers that divide into a larger number without a remainder

- Factors of 18 are 1 and 18, 2 and 9, and 3 and 6; the prime factors are 2 and 3

common factor

A factor shared by two numbers

- Factors of 18 are 1 and 18, 2 and 9, and 3 and 6.
- Factors of 15 are 1 and 15 and 3 and 5.
- The common factors of 15 and 18 are 1 and 3.
DEFINITION

factor

divisible

DEFINITION

prime number

ARITHMETIC

What are the first 10 prime numbers?

DEFINITION

common factor

DEFINITION

prime factor
Rules of Divisibility

2: If the last digit of a number is even, it is a multiple of 2.
3: If the sum of the digits is divisible by 3, the entire integer is a multiple of 3.
4: If the last two digits are a multiple of 4, the entire number is a multiple of 4.
5: If the last digit ends in 0 or 5, the entire number is divisible by 5.
6: If the number is both divisible by 2 and 3, it is divisible by 6.
9: If the sum of the digits is divisible by 9, the entire integer is a multiple of 9.

Addition of Integers

even + even = even
odd + odd = even
odd + even = odd

positive + positive = positive
negative + negative = negative
positive + negative = can be either

Multiplication of Integers

even × even = even
odd × odd = odd
odd × even = even

positive × positive = positive
negative × negative = positive
positive × negative = negative

Fraction Equivalent

0.125

Fraction Equivalent

0.16\bar{6}

Fraction Equivalent

0.2
ARITHMETIC

Addition of Integers

- even + even =
- odd + odd =
- odd + even =
- positive + positive =
- negative + negative =
- positive + negative =

SHORTCUT

Rules of Divisibility

ARITHMETIC

Multiplication of Integers

- even + even =
- odd + odd =
- odd + even =
- positive + positive =
- negative + negative =
- positive + negative =

DECIMAL EQUIVALENT

- \[\frac{1}{8} \]
- \[\frac{1}{5} \]
- \[\frac{1}{6} \]
Fraction Equivalent

0.25

0.33

0.5

0.4

0.66

0.75
Rate Formula

\[r = \frac{d}{t} \]

- \(r \) = rate
- \(d \) = distance
- \(t \) = time

What Percent?

\[\frac{x}{100} \quad \text{or} \quad \frac{?}{100} \]

Average Rate of Speed

\[\frac{2 \times \text{rate}_1 \times \text{rate}_2}{\text{rate}_1 + \text{rate}_2} \]

Combined Work

\[\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} = \frac{1}{t_T} \]

- \(t_1 \) = time of first person
- \(t_2 \) = time of second person
- \(t_3 \) = time of third person
- \(t_T \) = time together

Plus, More Than, Added To, Increased By, Sum

\[+ \]

What? What Number?

- \(x \), \(n \), ?, \(or \)
- other variable
TRANSLATE

How do you represent the phrase “what percent”?

WORK AND RATES

What is the rate formula?

WORK AND RATES

What is the formula for combined work problems?

WORK AND RATES

What is the formula for average rate of speed?

TRANSLATE

How do you represent “what” or “what number”?

TRANSLATE

How do you represent “plus,” “more than,” “added to,” “increased by,” and “sum”?
minus, less than, subtracted from, decreased by, reduced by, difference

of, times, product

per, out of, quotient

is, equals, result

90° angle

60° angle
TRANSLATE

How do you represent “of,” “times,” or “product?”

TRANSLATE

How do you represent “minus,” “less than,” “subtracted from,” “decreased by,” “reduced by,” and “difference?”

TRANSLATE

How do you represent “is,” “equals,” or “result?”

TRANSLATE

How do you represent “per,” “out of,” or “quotient?”

BENCHMARKS

Illustrate a 60° angle.

BENCHMARKS

Illustrate a 90° angle.
45° angle

\[\text{divide by same base} \]

\[x^n \div x^m = x^{n-m} \]

30° angle

\[\text{multiply by same base} \]

\[(x^n)(x^m) = x^{n+m} \]

\[\text{multiply by same power} \]

\[(x^n)(y^n) = (xy)^n \]

\[\text{divide by same power} \]

\[x^n \div y^n = (x \div y)^n \]
BENCHMARKS

Illustrate a 30° angle.

BENCHMARKS

Illustrate a 45° angle.

EXPONENTS AND ROOTS

Multiplication of the same base:

\((x^n)(x^m) \)

EXPONENTS AND ROOTS

Division of the same base:

\(x^n \div x^m \)

EXPONENTS AND ROOTS

Division with the same power:

\(x^n \div y^n \)

EXPONENTS AND ROOTS

Multiplication with the same power:

\((x^n)(y^n) \)
base\(^{-\text{negative}}\)

\[
\frac{1}{x^n}
\]

base\(^0\)

\[
3^0 = 1 \text{ and } x^0 = 1
\]

single base with powers

\[
(x^n)^m = x^{n\times m}
\]

fractional exponents

\[
x^\frac{n}{m} = \sqrt[m]{x^n}
\]

classic form #2

\[
(x + y)^2 = x^2 + 2xy + y^2
\]

Examples:

\[
(t + 5)^2 \rightarrow t^2 + 2t(5) + 5^2 \rightarrow t^2 + 10t + 25 \\
(3a + b)(3a + b) \rightarrow 9a^2 + 6ab + b^2 \\
y^2 + 16y + 64 \rightarrow y^2 + 2(y)(8) + 8^2 \rightarrow (y + 8)^2 \\
36 + 12n + n^2 \rightarrow 6^2 + 2(n)(6) + n^2 \rightarrow (6 + n)^2
\]

classic form #1

\[
(x + y)(x - y) = x^2 - y^2
\]

Examples:

\[
(t - 5)(t + 5) \rightarrow t^2 - 5^2 \rightarrow t^2 - 25 \\
(3a + b)(3a - b) \rightarrow (3a)^2 - b^2 \rightarrow 9a^2 - b^2 \\
y^2 - 64 \rightarrow y^2 - 8^2 \rightarrow (y + 8)(y - 8) \\
36 - n^2 \rightarrow 36^2 - n^2 \rightarrow (6 + n)(6 - n)
\]
EXPONENTS AND ROOTS

When a base is raised to the power of 0, what is the result?

For example, what is 3^0 or x^0?

$\boxed{x^{-n}}$

EXPONENTS AND ROOTS

Fractional exponents:

$\boxed{x^{\frac{n}{m}}}$

EXPONENTS AND ROOTS

Multiplication of a single base with multiple powers:

$\boxed{(x^n)^m}$

CLASSIC QUADRATIC FORM

$(x + y)(x - y) =$

CLASSIC QUADRATIC FORM

$(x + y)^2 =$
classic form #3

\[(x - y)^2 = x^2 - 2xy + y^2\]

Examples:
- \((t - 5)^2 \rightarrow t^2 - 2(t)(5) + 5^2 \rightarrow t^2 - 10t + 25\)
- \((3a - b)(3a - b) \rightarrow 9a^2 - 6ab + b^2\)
- \(y^2 - 16y + 64 \rightarrow y^2 - 2(y)(8) + 8^2 \rightarrow (y - 8)^2\)
- \(36 - 12n + n^2 \rightarrow 6^2 - 2(n)(6) + n^2 \rightarrow (6 - n)^2\)

direct variation

\[y = cx\]

area of a circle

\[A = \pi r^2\]

indirect variation

\[c = xy\]

circumference of a circle

\[C = 2\pi r\]

area of a rectangle

\[A = \ell w\]
DIRECT VARIATION

What is the formula for direct variation?

CLASSIC QUADRATIC FORM

\[(x - y)^2 = \]

INDIRECT VARIATION

What is the formula for indirect variation?

FORMULA BOX

What is the formula for the area of a circle?

FORMULA BOX

What is the formula for the area of a rectangle?

FORMULA BOX

What is the formula for the circumference of a circle?
area of a triangle

$$A = \frac{1}{2}bh$$

volume of a rectangular solid

$$V = \ell \, wh$$

volume of a cylinder

$$V = \pi r^2h$$

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

30°:60°:90° triangle

$$\begin{align*}
x & = 2x \\
30° & = x \\
60° & = x \sqrt{3} \\
\end{align*}$$

45°:45°:90° triangle

$$\begin{align*}
s & = s \\
45° & = s \sqrt{2} \\
\end{align*}$$
FORMULA BOX
What is the formula for the volume of a rectangular solid?

FORMULA BOX
What is the formula for the area of a triangle?

FORMULA BOX
What is the Pythagorean Theorem?

FORMULA BOX
What is the formula for the volume of a right circular cylinder?

FORMULA BOX
What are the assigned side ratios in a 45°:45$^\circ$:90$^\circ$ triangle?

FORMULA BOX
What are the assigned side ratios in a 30°:60$:90^\circ$ triangle?
degrees of arc in a circle

360°

sum of the angles in a triangle

180°

\[x° + 50° + 35° = 180° \]
\[x = 95° \]

intersected parallel lines

perpendicular lines

right angle

bisect

bisect = to divide in two equal parts

perimeter of a triangle

perimeter = \(s_1 + s_2 + s_3 \)
FORMULA BOX

What is the sum of the measures in degrees of the angles of a triangle?

FORMULA BOX

How many degrees of arc are in a circle?

LINES AND ANGLES

What angle is created by the intersection of perpendicular lines?

LINES AND ANGLES

What relationship results when two or more parallel lines are intersected by a transversal?

BASIC TRIANGLES

What is the formula for finding the perimeter of a triangle?

LINES AND ANGLES

What is the definition of "bisect?"
sum of the lengths of 2 sides

The sum of the lengths of any two sides of a triangle is always greater than the length of the remaining side.

Pythagorean Triples

- 3 : 4 : 5
- 5 : 12 : 13
- 7 : 24 : 25
- 8 : 15 : 17
- 9 : 40 : 41
- 12 : 35 : 37
- 20 : 21 : 29

similar triangles

Triangles that have the exact same shape but different area. The corresponding angle measurements of similar triangles are equal, and the corresponding side lengths are proportionate:

hidden triangles

Two 30º:60º:90º triangles are hidden in every equilateral triangle:

Two 45º:45º:90º triangles are hidden in every square:
BASIC TRIANGLES

What is the sum of the measures in degrees of the angles of a triangle?

The sum of the lengths of any two sides of a triangle is always greater than ________________.

BASIC TRIANGLES

What are similar triangles?

SPECIAL TRIANGLES

Name the most common Pythagorean Triples.

SPECIAL TRIANGLES

What is hidden in a square?

SPECIAL TRIANGLES

What is hidden in an equilateral triangle?
isosceles triangles

An isosceles triangle has two sides of equal length and two angles of equal size. The two equal angles are opposite the two equal-length sides:

Equilateral triangles have equal side lengths and equal angle measurements. Since the interior angles of a triangle add up to 180°, the three angles of an equilateral triangle must each equal 60°:

perimeter of a rectangle

\[P = 2\ell + 2w \]

Area of a square

\[A = \ell w \text{ or } s^2 \]

Area of a parallelogram

\[A = \ell h \]

Perimeter of a square

\[P = 4s \]
SPECIAL TRIANGLES

What is an equilateral triangle?

BASIC TRIANGLES

What is an isosceles triangle?

QUADRILATERALS

What is the formula for the perimeter of a rectangle?

QUADRILATERALS

What is the formula for the area of a square?

QUADRILATERALS

What is the formula for the perimeter of a square?

QUADRILATERALS

What is the formula for the area of a parallelogram?
regular polygons

Polygons that have equal side lengths and equal angle measurements are called regular polygons.

Regular Pentagon Regular Hexagon

interior angles of a quadrilateral

360°

90° + 90° + 90° + 90° = 360°

50° + 130° + 50° + 130° = 360°

interior angles of a hexagon

720°

120° + 120° + 120° + 120° + 120° + 120° = 720°

interior angles of a pentagon

540°

108° + 108° + 108° + 108° + 108° = 540°

interior angles of an octagon

1080°

135° + 135° + 135° + 135° + 135° + 135° + 135° + 135° = 1080°

circumference of a circle

\[C = 2\pi r \]
POLYGONS

What is the sum of the interior angles of a quadrilateral?

What is a regular polygon?

What is the sum of the interior angles of a pentagon? What is the measure of each angle in a regular pentagon?

What is the sum of the interior angles of a hexagon? What is the measure of each angle in a regular hexagon?

What is the sum of the interior angles of a octagon? What is the measure of each angle in a regular octagon?

CIRCLES

What is the formula for the circumference of a circle?
tangent

A tangent is a line that touches a circle at only one point. A radius or diameter drawn to that point is perpendicular to the tangent.

area of a circle

\[A = \pi r^2 \]

length of an arc

The length of an arc = \(\frac{x^\circ}{360^\circ} (2\pi r) \)

area of a sector

The area of a sector = \(\frac{x^\circ}{360^\circ} (\pi r^2) \)

volume of a cube

\[V = S^3 \]

surface area of a cube

\[SA = 6S^2 \]
CIRCLES

What is the formula for the area of a circle?

What is a tangent?

What is the formula for finding the length of an arc?

What is the formula for finding the area of a sector?

GEOMETRIC SOLIDS

What is the formula for the surface area of a cube?

What is the formula for the volume of a cube?
volume of a rectangular solid

\[V = \ell wh \]

surface area of a rectangular solid

\[SA = 2\ell w + 2\ell h + 2wh \]

volume of a cylinder

\[V = \pi r^2 h \]

length of a diagonal in a rectangular solid

Length of the diagonal =

\[\sqrt{l^2 + w^2 + h^2} \]

distance formula

Distance = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)

midpoint formula

Midpoint = \(\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \)
GEOMETRIC SOLIDS

What is the formula for the surface area of a rectangular solid?

What is the formula for the volume of a rectangular solid?

What is the formula for the length of a diagonal in a rectangular solid?

What is the formula for the volume of a right circular cylinder?

COORDINATE GEOMETRY

What is the Midpoint Formula?

What is the Distance Formula?
slope formula

\[\text{Slope} = \frac{y_2 - y_1}{x_2 - x_1} \]

positive slope

Parallel lines have equal slopes.

Slope of line \(\ell = \frac{2}{3} \)

Slope of line \(m = \frac{2}{3} \)

negative slope

equation of a line

Equation of a line: \(y = mx + b \)

Where:

\(m \) = slope

\(b \) = \(y \)-intercept

\(x \) and \(y \) = the \(x \)- and \(y \)-coordinate \((x, y) \) of any point on the line

perpendicular lines have slopes that are negative reciprocals

Slope of line \(\ell = \frac{2}{3} \)

Slope of line \(m = -\frac{3}{2} \)
COORDINATE GEOMETRY

Lines with a positive slope tilt _____ when moving from left to right.

What is the Slope Formula?

COORDINATE GEOMETRY

Lines with a negative slope tilt _____ when moving from left to right.

How are the slopes of parallel lines related?

COORDINATE GEOMETRY

What is the equation of a line?

How are the slopes of perpendicular lines related?
Standard Equation of a Parabola

Standard equation of a parabola: \(y = ax^2 + bx + c \)

- \(a, b, \) and \(c \) are constants
- \(x \) and \(y \) = the \(x \)- and \(y \)-coordinate \((x, y)\) of any point on the parabola
- \((0, c)\) is the \(y \)-intercept
- When \(a \) is positive, the parabola opens upward
- When \(a \) is negative, the parabola opens downward
- When \(b = 0 \), the parabola is centered on the \(y \)-axis
- When \(b > 0 \), the parabola moves to the left of the \(y \)-axis
- When \(b < 0 \), the parabola moves to the right of the \(y \)-axis

Equation of a Linear Function

Equation of a line: \(y = mx + b \)

Equation of a linear function: \(f(x) = mx + b \)

Where:
- \(m \) = slope
- \(b \) = \(y \)-intercept
- \(x \) and \(f(x) \) = the \(x \)- and \(y \)-coordinate \((x, y)\) of any point on the line

Standard Equation of a Quadratic Function

Standard equation of a parabola: \(y = ax^2 + bx + c \)

- \(a, b, \) and \(c \) are constants
- \(x \) and \(y \) = the \(x \)- and \(y \)-coordinate \((x, y)\) of any point on the parabola
- \((0, c)\) is the \(y \)-intercept
- When \(a \) is positive, the parabola opens upward
- When \(a \) is negative, the parabola opens downward
- When \(b = 0 \), the parabola is centered on the \(y \)-axis
- When \(b > 0 \), the parabola moves to the left of the \(y \)-axis
- When \(b < 0 \), the parabola moves to the right of the \(y \)-axis

Vertex Equation of a Parabola

Vertex equation of a parabola: \(y = a(x - h)^2 + k \)

- \((h, k)\) is the vertex of the parabola
- \(x \) and \(y \) = the \(x \)- and \(y \)-coordinate \((x, y)\) of any point on the parabola
- When \(a \) is positive, the parabola opens upward
- When \(a \) is negative, the parabola opens downward

Vertex Equation of a Quadratic Function

Vertex equation of a parabola: \(y = a(x - h)^2 + k \)

Vertex equation of a quadratic function: \(f(x) = a(x - h)^2 + k \)
COORDINATE GEOMETRY

Lines with a positive slope tilt _____ when moving from left to right.

What is the standard equation of a parabola?

What is the standard equation of a quadratic function?

What is the vertex equation of a quadratic function?

Translation:

\[y = f(x) + 1 \]
y = f(x) – 1
Shifts down 1 unit

y = f(x + 1)
Shifts left 1 unit

y = f(2x)
The parabola becomes "skinnier"

y = f(x – 1)
Shifts right 1 unit

y = f(½x)
The parabola becomes "fatter"

y = 2f(x)
The parabola becomes "longer"
COORDINATE GEOMETRY

Translation:

\[y = f(x + 1) \]

Translation:

\[y = f(x) - 1 \]

Translation:

\[y = f(x - 1) \]

Transformation:

\[y = f(2x) \]

Transformation:

\[y = 2f(x) \]

Transformation:

\[y = f\left(\frac{1}{2}x\right) \]
The median is the number that appears in the middle of a set of ascending numbers.

In the following set, the median is 5:

\{2, 4, 5, 7, 7\}

The mode is the number that appears most frequently in a set.

In the following set, the mode is 7:

\{2, 4, 5, 7, 7\}
COORDINATE GEOMETRY

Reflection:
\[y = -f(x) \]

COORDINATE GEOMETRY

Transformation:
\[y = \frac{1}{2} f(x) \]

STATISTICS

What is the formula for finding the average of a set of numbers?

What is the mode?

What is the median?
probability formula

Probability = \[
\frac{\text{number of favorable outcomes}}{\text{number of possible outcomes}}
\]

probability of a non-occurrence

Probability of event not occurring = \[
1 - \frac{\text{number of favorable outcomes}}{\text{number of possible outcomes}}
\]

geometric sequence

In a geometric sequence, each term increases by a constant ratio.

\[a_n = a_1 \times r^{n-1}\]

Where:
- \(a_1\) = the first term
- \(n\) = the number of terms
- \(r\) = constant ratio

arithmetic sequence

In an arithmetic sequence, each term increases by a constant difference.

\[a_n = a_1 + (n-1)d\]

Where:
- \(a_1\) = the first term
- \(n\) = the number of terms
- \(d\) = constant difference

geometric sequence sum

Sum of the first \(n\) terms in a geometric sequence = \[
\frac{a_1(1 - r^n)}{1 - r}
\]

arithmetic sequence sum

Sum of the first \(n\) terms in an arithmetic sequence = \[
\frac{n}{2} \left(a_1 + a_n \right)
\]
PROBABILITY

What is the formula for the probability of something not happening?

PROBABILITY

What is the formula for probability?

SEQUENCES

What is an arithmetic sequence and how do you find the \(n \)th term?

SEQUENCES

What is a geometric sequence and how do you find the \(n \)th term?

SEQUENCES

How do you find the sum of the first \(n \) terms in an arithmetic sequence?

SEQUENCES

How do you find the sum of the first \(n \) terms in a geometric sequence?
geometric probability

Geometric Probability =
\[
\frac{\text{shaded area}}{\text{total possible area}}
\]

overlapping groups

- Group A
- + Group B
- + Neither Group
- – Both Groups
- Total

probability of two events

Find the probability of each independent event and then find their product.

combinations

Multiply the elements together:

\[
2 \text{ shirts } \times 3 \text{ pants } \times 2 \text{ shoes} = 12 \text{ outfit combinations}
\]

visualization

I will be successful because I am good at SAT math.

permutations

Determine the number of elements for each position and then multiply the elements together:

\[
\begin{align*}
\text{First Place} & \quad 4 \quad \Delta \quad B, \ C, \ D \\
\text{Second Place} & \quad 3 \quad \Delta \quad B, \ C, \ D \\
\text{Third Place} & \quad 2 \quad \Delta \quad B, \ C, \ D \\
\text{Fourth Place} & \quad 1 \quad \Delta \quad B, \ C, \ D \\
\end{align*}
\]

\[
= 24
\]
OVERLAPPING GROUPS

What is the formula for finding a population in an overlapping groups question?

COUNTING PROBLEMS

In a combination, how do you find the total number of arrangements?

COUNTING PROBLEMS

In a permutation, how do you find the total number of arrangements?

PROBABILITY

What is the formula for geometric probability?

PROBABILITY

How do you find the probability of two independent events both occurring?

VISUALIZATION

How will I do on the math section of the SAT?